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1 FINAL PRODUCT
1.1 Functional Specification Compliance
The WACC compiler’s front-end phase possesses several key functionalities for parsing and semantic

analysis. Pattern matching simplifies the handling of various syntaxes. The error-handling mechanism
produces precise feedback on syntax and semantic errors. Connecting AST nodes to scopes ensures ac-
curate symbol resolution and scope management for semantic integrity. Improvements in error messages
and pattern matching efficiency could significantly enhance usability and robustness.
On the back-end, translating high-level program constructs into intermediate representation before

final code generation shows potential for optimizations and cleaner representation. The code generation
abstraction layer offers flexibility and ease of extension, while register mapping management ensures
memory-mapped register mechanism correctness.

1.2 Further Development
While the current design offers robustness, it poses challenges for future development. Rapid integration

of cutting-edge language features or optimization techniques may require extensive testing and refactoring.
The reliance on a complex abstraction system for register mappings and IR management could hinder new
developers, slowing innovation. Balancing performance optimization and codebase complexity is crucial
for maintaining system maintainability and preventing regressions as the compiler evolves.

1.3 Performance Characteristics
The compiler exhibits a structured approach to code generation and optimization, laying a foundation

for efficiently executable code. Yet, true performance entails optimizing at multiple compilation stages,
including dead code elimination and constant folding. These optimizations directly enhance runtime
efficiency, reducing execution time and resource consumption. Leveraging existing C library functions
further suggests intelligent reuse of optimized code, potentially boosting output performance without
redundant effort.

2 PROJECT MANAGEMENT
2.1 Team Composition and Roles
Our team operates without a central leader, fostering a collaborative atmosphere where everyone stays

in sync. Our project workflow is methodical, starting with collective task volume analysis. Weekly group
discussions address conflicts and monitor individual progress, ensuring open communication and keeping
the project on track. Each team member has distinct responsibilities:

1. Yunkai Zhang Tasked with constructing the main framework and codebase of the project and
allocating general tasks among the team members. Yunkai’s role is pivotal in setting the project’s
foundation and ensuring that each team member has clear objectives and responsibilities.

2. Weijun Huang Responsible for the primary codebase for the project as well. Weijun’s expertise in
coding and software engineering is crucial for the development of functional and efficient software
solutions.

3. Yanli Wang Overseen the overall progress of the project. Yanli’s role ensures that the project
meets its milestones on schedule, alongside conducting analytical reviews for quality assurance.

4. Cheng Ma Focused on debugging and code cleanliness improvement. Cheng’s attention to problem-
solving skills is essential for maintaining the integrity of the code and harmonizing team dynamics.
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2.2 Management Tools
We leverage various tools to enhance project management and execution. Git is used for version control

and detailed task allocation, facilitating a clear and efficient development process. LucidChart aids in the
conceptualization of project architecture, offering a visual understanding of task inter-dependencies. The
adoption of CI/CD pipelines automates key stages of code integration, testing, and deployment, stream-
lining the development cycle. For testing, we conduct integration tests by scripting in Python. This script
compiles for all .wacc files in the given paths. We utilize Docker to emulate an x86 Linux environment for
cross-platform compatibility. To streamline the testing process, we automate test execution by scripting
within a Makefile.

2.3 Discussion
Despite our successes, we’ve encountered overly specific task differentiation, which leads to reduced

coding time and early-stage code conflicts due to communication gaps. To avoid such a situation for
future projects, we aim to shorten the conceptual phase and enhance team understanding of each other’s
work. Reflecting on our workflow and the challenges encountered, we are committed to implementing
lessons learned to enhance future project outcomes.

3 DESIGN CHOICES AND IMPLEMENTATION DETAILS
3.1 Rust
Rust distinguishes itself from the other two popular choices for WACC, Haskell and Scala, in compiler

implementation through its deterministic memory management and robust performance.

1. Memory Safety without Garbage Collection Rust’s ownership model ensures memory safety
and efficiency and eliminates common bugs like dangling pointers and buffer overflows without
runtime overhead.

2. Functional Programming Features Rust’s pattern matching, closure system, and functional
features are powerful tools for succinctly expressing complex logic, particularly in concisely parsing
and navigating ASTs, facilitating easier maintenance and extension of compiler functionalities.

3. External Library Management System Rust has a uniform system for the use of external
libraries (crates), with ease to utilize and manage various external tools from the community.

3.2 Parser Tool: Chumsky
There exist multiple parser tools in Rust such as the famous nom library, featuring highly customisable

parser choices and there is lalrpop, a parser generator library. Considering the need for error location
reporting and our preference for parser combinator approach, we eventually picked Chumsky, having its
elegant error formatting tool Ariadne for errors with a native Rust flavour, and its multiple functions
such as Pratt parsing and location mapping.

3.3 Architecture for Compiler & Design Pattern
The architecture of the WACC compiler is meticulously designed to leverage Rust’s strengths across

its front-end and back-end phases.
In the front-end phase, the compilation process begins with the loading of a WACC source file through

a command-line interface. The lexer then tokenizes the input, and the parser analyzes the tokens to
construct an initial Abstract Syntax Tree (AST). If any errors are encountered during these stages,
corresponding error messages are generated and the process halts. Successful parsing leads to semantic
analysis, where the AST is validated and a symbol table is constructed. This stage enforces semantic
rules and outputs the Program’s full AST along with its symbol table for the next phase.
The back-end phase is focused on transforming the approved AST into executable code. Initially, the

AST undergoes optimization, including basic control flow and constant folding. Subsequent IR (Interme-
diate Representation) Translation prepares the code for machine-level representation. This includes the
initialization of global variables and construction of stack-based body instructions with library depend-
encies. A dependency graph further refines the IR, which ultimately leads to the generation of the final
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assembly code. This code, which comprises pre-defined structures, the main code body, and linked library
functions, is the final output of the compiler, ready for execution on the target x86 architecture.

The development of WACC also emphasized design patterns and development methodologies:

1. TDD We deployed Test-Driven Development (TDD) for the WACC compiler to prioritize code
quality and functional correctness from the beginning. By writing tests before actual code, we
ensured each feature met its specifications precisely, fostering a modular design. TDD not only
helped in detecting issues early but also served as documentation, guiding future enhancements.

2. Visitor Patterns The visitor pattern encapsulates algorithms that work on a diverse collection of
objects. It enables the creation of multiple algorithms for the same data without altering the data
itself or its core behavior. Additionally, this pattern separates the traversal of object collections from
the actions performed on each object. By employing this strategy, code becomes more structured,
leading to enhanced readability.

4 BEYOND THE SPECIFICATION
4.1 Extensions
4.1.1 Optimisation: Constant Folding & Control-Flow Processing

Overview and Restrictions One part of our extension were about focusing on optimisation of gener-
ated assembly code to make it less tedious and remove some redundant assembly instructions. All the
optimisation process would eventually contribute to code cleanup, improving the efficiency and running
performance of the target architecture, and generating readable and precise assembly code.
Via compiler designing principles, the optimisations in assembly code could be generalised into several

categories: local optimisation, regional optimisation, global optimisation, and inter-procedural optimisa-
tion. Each of the optimisation method will hold a different perspective of the IR structure and therefore
will require different levels of information.
Regional optimisations will consider a subset formed by several nodes (for example, in some cases, a

node) in the control-flow graph (CFG) as a whole and perform optimisations based on the shape, inbound
edges, and in some cases actual running setup when entering a certain block. Similarly but on a higher
level, global and interprocedural optimisations will be dependent on the CFG, however focusing more on
the shape of the whole graph and larger blocks. We have attempted to implement a minimal CFG design
sketch in one of our attempts, however did not have enough availablility to complete such design with
capability to support regional optimisations. Therefore we would be focusing on local optimisation and
AST-level optimisation in our final design to guarantee correctness.
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Constant Folding One of the ideas of conducting optimisation is on folding constants. Given a long
expression such as 1 + (2 * (344 % 9 + 277)), it is totally feasible to calculate the expression at
compile-time internally, without generating codes and AST nodes for each of the smaller expressions
(with ‘depth = 4’). Consider a program with a huge amount of longer but calculatable expressions, these
internal folding processes could largely reduce the size of the code generated and therefore complete
optimisation. Basic Constant Folding reduces compile-time known expressions to their simplest form
automatically.
We did not implement the full constant propagation and folding as this would as well rely on the CFG

and is considered as a regional optimisation. Instead, we implemented a partial interpreter (focusing on
the simplification of expressions) and would simply our AST after semantic checking and type inference.
Therefore, multi-leveled expression nodes would be abstracted into one single constant expression node
when possible via introducing BasicValueType(Value). This will calculate all expressions that could
directly result in calculating a basic value without further context to be converted at compile time.
However, notice that expression calculations that will induce runtime errors (such as divide by zero,
arithmetic overflow) should still be reserved so the correct error types could be properly handled.
We mimic the behaviours of expressions as close to its natural calculation as possible. Therefore we

implemented relative ‘std::ops’ traits to mimic natural calculation for ‘BasicValue’ types.

Control-Flow Processing Similar to constant folding, control-flow optimisations is another approach we
can apply on the AST. Consider the 'if' and 'while' statements:
According to the semantics of 'if' statements. If the condition cond evaluates to true, we will automat-

ically execute st1 then exit the if-statement, and vice versa. Similarly, although we cannot determine the
behaviour of while true ... patterns (as internally variable changes and it requires the internal body
to reach a certain state), we can immediately determine that while cond ... statements are equivalent
to a skip if cond evaluates to false, because the body statements will never be executed.
Therefore, by combining with the previous part, we can simply control-flow statements of certain

patterns and (partially) avoid dead code at compile-time.

Peephole Optimisation According to the Dragon Book, Peephole Optimisation is also a type of local
optimisation that could be completed via inspecting only the nearby lines. It has been generally generalised
into the following patterns:

1. Redundant MOV instructions: Instructions in the format of Mov A A are totally unnecessary as this
does no effective operation

2. Duplicated LOAD and STORE statements (this is more related to aarch64 as compared to x86)

3. Algebraic Simplification

Algebraic Simplification including the general reduction: a± 0 = a, a ∗ 0 = 0, a ∗ 1 = a, and a/1 = a.
We would evaluate the left and right hand sides of the given expression and check whether they match

the given patterns above. If any match is found, the pattern would be reduced immediately to its simplest
form (as given on the right hand side).

Optimisation Visualisation Our implementation by default turns on the optimisation, which is the
version provided to the integration test. To turn off optimisation, we provided another bash script
unoptimised-compiler to view the originally generated unoptimised version of assembly codes. Sim-
ilar to running ./compile target.wacc, just run ./unoptimised-compiler target.wacc to view the
generated assembly code.

4.1.2 Local Type Inference

In the local type inference extension, we allow programmers to implicitly indicate the variable types
and function return types rather enforcing explicit casts. Our compiler will deduct the actual type using
the surrounding codes as hints. We used a new keyword val to indicate implicit types.
To complete the initial inference, there are two cases. In variable declarations, we first evaluate the

value on the RHS of =. This allows us to determine both the type and value for the declaration. This
approach remains viable as we do not permit declarations without variable signatures. For instance “val
x = 5” will add seen as “int x = 5”, and in this case x with type int will be added into symbol table. The
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process is similar for return type inference. We infer the implicit return type by calculating the expression
in return statements. For example, “return true” will infer the return type as bool.
For the error reporting phase, we will infer the actual types for variables during declaration or infer

return types when encountering a return statement for the first time within a function. Subsequently,
we conduct semantic checks by comparing the expected types with the actual types during expression
evaluation and statement analysis. If there is a type mismatch, we generate a report indicating the location
of the error.

4.1.3 Global Monomorphic Type Inference

In case of global monomorphic type inference, there are several additional factors. Firstly, we introduced
inferred types for function arguments. Furthermore, we aimed to infer a function’s return type within its
declaration via <rvalue> manipulation.
The process of type inference is conducted within the semantic checker. When a statement invokes an-

other function, a call stack is established to document such functions. Should a function not be previously
recorded in AVAILABLE_FUNCTIONS, it signifies the absence of inferred parameter types. Consequently,
the inference process for the current function is halted, and efforts are redirected towards inferring types
within the called function, subsequent to which the function is registered in AVAILABLE_FUNCTIONS.
Upon the completion of the initial inference phase, a reevaluation of loop functions within AVAILABLE_F-

UNCTIONS is undertaken to ensure the inference of all function return types. This is followed by a com-
prehensive iteration over all functions to guarantee the updated accuracy of statements. The augmented
Abstract Syntax Tree (AST) is then returned. Any discrepancies unearthed during the inference and
semantic verification stages are meticulously reported and showcased.
Consider, for example, two functions, f and g, with the main function invoking f at the declaration

phase. In this context, f is relegated to the calling stack, incorporated into AVAILABLE_FUNCTIONS, and
its parameter type is deduced. Should function f, within its ambit, call function g in another declaration
statement and return this variable, the analysis of the current line in f is suspended to facilitate the
inference of g’s return type.
In instances where function g does not invoke additional functions, its return value is ascertainable

through the expression, thereby enabling the retrospective inference of the variable type in the main
function. Conversely, scenarios involving mutual recursion between functions f and g, akin to factorial
computation, introduce heightened complexity. Here, a reciprocal calling pattern is established, necessit-
ating a nuanced approach to avoid redundant evaluations. Specifically, upon returning to function f and
identifies the invocation of g, the return type of f is deduced to match that of g.
This iterative process extends to a subsequent loop through AVAILABLE_FUNCTIONS to affirm the return

types. This confirmation phase plays a pivotal role in steering the process of deducing the return types
of other functions whose return types have yet to be established. Once all function arguments and return
types are inferred, a final review of all functions is conducted to confirm the inference of their declaration
types. This exhaustive process culminates in the generation of an AST, the integrity of which can be
validated through semantic check outcomes and direct inference results, thereby ensuring the program’s
functionality.

4.2 Future Extension: Efficient Register Allocation and Regional Optimisation
Given more time, we plan to fully implement a functional CFG design, deploy the regional optimisation

methods, and apply an efficient register allocation algorithm via graph colouring.
As much of our initial construction for extension would rely on a functionally correct CFG design, we

would try to construct such graph and apply all further changes.
Fixing and fully implementing the CFG structure would be the starting point of all the further im-

provements. CFG will record the trace of register usage and flow trends in the whole program, allowing
us to analyze the program structure as an entire entity.
Our current register allocation algorithm rely on a pure stack-machine approach to reduce stack op-

erations, minimise unnecessary memory accesses, and improve efficiency as it favours register reuse over
stack and heap usages.
Other possible extensions to consider are the common regional and global optimisation methods such

as full constant propagation and control-flow analysis. With a full CFG model, it would be possible to
simplify redundant branches (edges in the graph) and dead-code. The graphical representation would
allow us to detect the jumping strategy of the program and redesign or optimise the control logic.
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