Computational Effects:

A Story of Categories and Algebras

Yunkai Zhang
yz9522@ic.ac.uk

Computational Effects:

ory of Categories and Algebras

UWhat the heck is 7%1'{'.7

Ue want to intferact with the world

..in a fonctional tacte!

Ue want to intferact with the world

Why do people v ﬁmctiona/,braym.mming?

e e compose our programs out of:

Input(s)

o result
Program

All the way - from the tiniest bits to the big components.

Why do people v Functional programming?

e e compose our programs out of:

Input(s) result

All the way - from the tiniest bits to the big components.

Why do people v Functional programming?

e e compose our programs out of:

result
»IIIIIIIIII-—-—-—-—-»

All the way - from the tiniest bits to the big components.

We love modularity!

Input(s)

Why do people v fanction&t/,braym.mming?

e e compose our programs out of:

o result >
Program

All the way - from the tiniest bits to the big components.

Well... Yes... But...

Input(s)

Consider an annoying example...

y = int(input("input:"))

print(y)

They return the same thing,
Shouldn't they be the same
function?

Why do people v Functional programming?

e e compose our programs out of:

N N result >
Program

Input(s)

10

Some Common Computational Effects

Input / Output

Error Handling and Exceptions
Mutable State

Logging

Concurrency

Generating Random Values

Ue want to intferact with the world

..in a fonctional tacte!

Ue want to inferact with the world

...in a fonctional tacte!

What is an effect?

14

What is an Effect?

Categories 101

15

What is an Effect?

Categories 101

Monads

16

What is an Effect?

Categories 101

Monads

17

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

18

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

19

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

20

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

Lawvere Theories
(Categories of Operations and Equations

21

Categoriec 107

Functions
A function, e.g. f(x) =x> —9x +7

comes with specified sets of “possible input values” and “potential output
values'f: I — R

We write

140

to indicate f has source | and target O.

23

Functions Compose!

e So why bother with source and targets?
e They indicate when are two functions composable:

A#B and B ——

e Are composable:
e just when the target of f equals the source of g.

24

What is a category?

e A categoryis atwo-sorted structure encoding the algebra of composition.
It has:
o Objects: A B, C, ..and

o Morphisms: A L B. B C . each specified with source and taraet

e So that, B
o each pair of composable arrows fand g . g
will have a composite arrow f o g / \
ida N
o Each object has an identity arrow A—A A gof > C

e for which the composition operation is associative and unital.

25

Icomorphicms

e Anisomorphism consists of:

f‘
A
g

So that;
gof=idgand f o g = idp

If A and B are isomorphic
then every category theoretic property of A is also true of B.

26

Functors

e Given categories C and D, a functor F' : C — D is specified by:
e A mapping obj C' — obj D whose value at X is written F X

o ForallX,Y € C afunction Hom (X, Y) - Hompy(FX, FY) whose
value at f: X — Yiswritten Ff : FX — FY

e .which is required to preserve composition and identity morphisms:
o F(gef)=F(g)eF(f) “
o F(Idx) — |dF(X)

27

Exemplar Cateqories

e Inthe category Set, the
e Objects are (finite) sets X, Y, ..

e Arrows are functions X 1> Y.

e In the syntactic category for some programming language, the
e Objectsaretypes XY, .

e Arrows are programs X L Y

e The precise ontology of the objects and arrows won't matter much.

28

Categories for Computational Effects
(Monade!)

1\
UK N
& pis? e
0ac s
g tes
VAL o
10847 o land s 4o
0! 0y
he JOBLS wo
o T ode‘:ha‘ tm ot a
e bl eno! equi¥

1
uage
ing Langu
ramming La
' Progra
iew of P
16W
stract \
])-‘Jtld
An A

Eugenio Mo

Sci.
‘omp.

for Found. of Co
Lab. fo

ory
a Categ
should form

ms

Progra

d
mona
ffect defines a
he

And a

My as f
ersity ’
Mit
™ p John)
at S thank to he
ced at han! od th
ere produce :\.ho attended
T Wi . ents
'These No}ea. Term 1gxgall students
i SI’"“g. >, and to
ht in sible,
taug] rd poss
Stanfo
to N
feedback.

[

Eugenio Moggi

Otiong co, putation Mopgg,
Ugenj, M,
Abstracl
The A-caj uly, Sideray Usefyy) m, t)mma:ical too] , e Stud)y, f p Wing
Iauguagm, ice Prog, be nientxﬁ&i With «Henus. Howavar, i ong °S furgp, T ang
Uses ﬂ?fconversion £ proy, Walep, of p, 1S, e 2 grogg Plificagje,, i i T0duceq
(programs e identiﬁed 'th to, [!Luctions fr Valyeq to va/ues), at ‘may Jeop, se the
applicability of thsore:i Tesujgg In this T W intl'oduce Caleyj; bage, 1 4 g, ©Boricy)
Mg "Utaty o, s thay Provige Correcy), IS for by i Uivalen, of amg,
for ide of cornputah}m.

zztroduction

T, is aboy, Iogxcs Onjp,, t p, gralns, Pay Ulay Proy, eqi euce op
DPro, Fol]owin & usolzdat d try, tion in tbeoretic ter Sci, we xdeutzfy Pr Bramg
With the Oseq A-ter, 3 PoSsiby Conty, a Cons,, ts, ¢ D ding Some g, tureg of
€ pr, gr; Uage Unde, considera 27 €re gy, 1C-byg, d app,
prowug equivaleuce of Brams.

The o Crat;, na| Prog, arts g, an erat:on cs, €g. 5 Parjy) tion
mappmg ever, program (i. Closeq term) to jgg rebh]tlllg Valye (if any) induc‘es a
Congpy, lce relat'on 1 opy, terpg Calleq operational ©QUivy, Nce (see eg. [Plo75]).
the DProp), 0 pro, © that two ter; are operationally equj, Jeng,

e denotat'onal a,ppmach ives an interpretatiau Of the (progmmmmg) 1

matbematical structure, the intended Moge, Tha.. the Prop, to
denote the Same object in the iatended o

“he logica; PProge, .

lien the ...

30

Monads, Categorically

e A monad over a category Cis a triple (T, n, i), where

T : C — Cisafunctor,
Morphisms 7, : A = TA and py : T?*(A) — T(A) for every object A € C
(For those of you who know: actually natural transformations)

o
e Make the following diagrams commute:
TA Tna

734 AL 12y 7A A LT 7y

T/_LA UA ldTA A .
A idT 4
2 V
T°A—>TA T A .

HA

Monads are Burritos

Assume C'is a category of foods. =&y

o 1 :(C — (Cisafunctor like burritos /i

e 1, :A — TA takes aregular value and turns it into a burrito

o Uy T?(A) — T(A) takes a ridiculous burrito of burritos and turns them
into a regular burrito.

1
e

32

Monaods are Meonoide

TA
T34 LT 724 Ta AL rag LA g
T id7 4
ldTA
v \Z v
T?A >TA T A
HA

A monad ie a monoid in the category of endofunctors

33

[-Programs

Let T be a notion of computation (encoding an effect)

A T-program from A to B is a function A L T(B),
from the set of values of type A to the set of T-computations of type B.

,
We also write # 7 B to denote A L T(B)

34

[-Programs

def greaterThanM (m : N) (n : N)
= n >m

—- setOf (p : a » Prop) : Set «a

def TNat (m : N) : Set N :=
setOf (greaterThanM m)

: Prop

N — LeanSet N

35

[-Programs

def greaterThanM (m : N) (n : N)
= n >m

—- setOf (p : a » Prop) : Set «a

def TNat (m : N) : Set N :=
setOf (greaterThanM m)

: Prop

N — T(N)

36

Sample ‘Notions of Computation” [/ T-Programs in the Cotegory of Sete

e Exceptions: TA = A + E where E is the set of exceptions

e Partiality: TA=A+ { L } (ie.Option AinLean 4)

o Side-Effect: TA = (S X A)® or TA={S - SX A} forfixed set S
modelling the effect of a single mutable state storing a value of S.

e Continuation: TA = R®Y or TA = (A—->R)—>R for a fixed set R

models the effect of call with current continuation (call/cc).

e Interactive Input: TA = uX.A + XV , where U is the set of characters
e e set of U-branching trees (with finite branches) and A-labelled

leaves, where uX . 7 is the least solution to domain equation X = 7

37

Sample ‘Notions of Computation” [/ T-Programs in the Cotegory of Sete

e Exceptions: TA = A + E where E is the set of exceptions

e Partiality: TA=A+ { L } (ie.Option AinLean 4)

o Side-Effect: TA = (S X A)® or TA={S - SX A} forfixed set S
modelling the effect of a single mutable state storing a value of S.

e Continuation: TA = R®Y or TA = (A—-R)—> R for a fixed set R

models the effect of call with current continuation (call/cc).

e Interactive Input: TA = uX.A + XV , where U is the set of characters
e e set of U-branching trees (with finite branches) and A-labelled

leaves, where uX . 7 is the least solution to domain equation X = 7

38

Clogan

A computational effect T defines a monad

f
just when the T-programs A =7 B

defines the arrows in a category of T-programs Kl

T

39

Clogan

A computational effect T defines a monad

f
just when the T-programs A =7 B

defines the arrows in a category of T-programs Kl

T

40

The Category of T-Programs

e TJo define the category of T-programs we need:
id
e |dentity Arrows: A ~> A

e \Xe can use 7 in monads! (Reminder:n : Idc — 1) so A o T(A)

e \We need to define composition making this diagram commute:

/f/_,Jf' \‘*\—\,\i Problem:

A oS C A 1> T(B)and B LN T(C) are not composable!
gof

41

Kleisli Triple

o AKleisli Triple over a category Cis a triple (7, n, u), where
e T :C — Cisafunctor
o 714:A — TAforeveryobjectA € C
o f*:TA — TBforeveryobjectA,Be Cand f:A — TB

f g
e Then we can have the Kleisli Composite of A~*Band B ™~ C

42

Kleisti Category over T: Kl

e Given an endofunctor T on category €, the Kleisli Category Kl is defined as:
e Obj(Kl;) = Obj(¥)
o idAznA:AaT(A)(i.e.Aié@A)
o HomKlT(A, B) = Homg(A, TB)
o gop f=g%cf:A—=TC gvenf:A—>T(B)andg:B - T(C)

43

There ic a one-to-one correspondence befween

Kleisli Triplee and Monads

44

Kl fiot for lict-computations

f
A list-program A =7 Bis a function from A to lists in B

i singleton
The identityAiﬂ@ list(A) is the function A 0 > list(A)

*
Any function B N list(C) extends to a function list(B) — list(C)
e Dby applying g to each term in a list of elements of B
e and concatenating the result.

The Kleisli composite

fr’;ﬁ)' B . 1ist(B) o
f \
A w C A — o » 1ist(C)

is defined by application of f and g followed by concatenation.

45

Monads in Progmmm‘ng

class Monad m where
(>=) @ ma—> (a >mb) > mb
return :: a — m a

46

Monads in Progmmm‘ng

class Monad

(>>=)

return

where
a > (a =
a — a

b) —

47

Monads in Progmmming

class Monad m where
(>=) @ ma—> (a >mb) > mb
return :: a — m a

n . lde = 1 is a natural transformation
Son, : A — TA is a morphism

48

Monads in Progmmming

class Monad m where
(>=) @2 ma—> (a >mb) > mb
return :: a — m a

f* . TA — TB foreveryobject A, B € Cand f: A - TB

49

Monads in Progmmming

class Monad m where
join c:m(ma) > ma
return :: a — m a

i T?> = T is a natural transformation
Sop, : T°A — TA is a morphism

50

Monads in Progmmming

class Monad m where
(>=) @2 ma—> (a >mb) > mb
return :: a — m a

f* . TA — TB foreveryobject A, B € Cand f: A - TB

A1

Exceptions ag a Monad
- TA =valA|ExnE (~A+E)
-1, =valV (in Haskell Monad, return v)

- Givenf: A - TB:
e(val V)>»>=f=fv
« (Exn E)>>=f=EXxn E
+ Operations Specific to Exceptions:
- raisee = Exne
- try a withx = b = match a with (valv - v|Exnx — b)

52

Mutable States ae a Monad

- TA=§5 > AXS (Sisthetypes of states)

-1, =Vs.(v,s) (in Haskell Monad, return v)

- Givenf: A - TB:

ca>>=f=Vs .fxs, where (x,s,) =as,

- Operations Specific to Mutable States:
- get loc =Vs.(s(loc), s)
- setloc v =Vs.((),s{l < v})

(threading the state)

53

Monades are used a¢

for interpreting effects

54

DS-FPR Maijp 19 June 2014 0:23 /
— —
Undey nSideratipy 1, Piblicarioy, ;, , Functiong, Programm; 1
Oliopg of Computatz'orz as Mo;zoid.r
Centry

Y de sttemas
‘Ciong] io, A, entj
Abstract
There , diffe, t ng 'Mputatio,
d S. In g icle we
Categ We de,
sts

/
~etie -9
> the m Pular Monads, Pplicatjy, funcrors.
atticle CS€ three Motions ¢y, be seen 48 mongjgg in g Monojqy;
Strate gh, A this Joye ufabsrraction one cap Obtajp Usefy] Tesultg Which ¢, be
0 the differen, Motiong compu(alion. In Particylyy, We shoy, how free COnstrycy;
and Cyy, ley reprcsentations for Monojqy Uangjyge into Usefu] ¢o, tructj foy
f lunctorx, and Arow_ Mo!bover, the Unifory, Pres, fal] e
[the reagio, betweey, them_

SIS of

Mon
ads are used a
¢
Co
me effects

I[’ .
or interpreting

56

Aonsds are used ac Lockbones for interpreting
T Come effects

Monoids in Monoidal Categories

57

But
where d
o these monad
¢ come fi
rom?

58

Algebraic Theories for Algebraic Effects
(L awvere Theoriec!)

59

Algebraic Theories

Algebraic Theory

A signature ¥ = (X, ar) consists of

M aset X of o bols and

M a function ar: ¥ — N, which assigns the arity ar(op) for
each op € 2.
For a signature X and a set X, the set of Terms(X)

generated by X is defined as the smallest set such that
B X C Termy(X) and
M foranyop € X and ti, ..., ty(op) € Terms(X),
op(ti, . - -, tar(op)) € Termg(X).

An equation is a pair (¢,r) of X-terms £,r € Termg(V).
We sometime write an equation (¢,r) as V£ =r.

An ic theory T is a pair (X,) of a signature ¥ and
a set of equations £ = {V; F ¢; = r;}ies.

60

Alaebraic Structures

e An algebraic structure comprises of:
e aset(oratype) called the carrier of the structure;
e operations over this set (with name and arity)

e equations (laws) that these operations satisfy.

61

Algebraic Structure of Monoids

e Amonoid (7, €, o) can be viewed as an algebraic structure, where

e Carrier: T
e Operations:

o ¢:0
o o:2

e Equations:
@ €oX =X
® Xo€ =X

e xo(yez)=(xoy)oz

62

Algebraic Structure of Monoids

e Amonoid (7, €, o) can be viewed as an algebraic Structure, where

e Carrier: T
e Operations:

o ¢:0
o m:?2
e Equations:
o m(e,x)=x
o m(x,e)=x
o m(x,m(y,z)) = m(m(x,y),z)

63

Algebraic Structure of Monoids

e Amonoid (7, €, o) can be viewed as an algebraic structure, where

e Carrier: T
e Operations:

o ¢:0
o m:?2
e Equations:
o {x}FHm(e,x)=x
o {x}FHmx,e)=x
o {x,y,2} Fmlx,m(y,z)) = m(m(x,y),z)

64

Algebraic Theory

e Atheory contains
e the signature of operators (hames and types)
e the equations

e the carrier is NOT to be specified here (it's abstract!)

65

/’/geér aic Theary [ﬂ'rct—ordek f/‘m'z‘akg}

e Atheory contains
e the signature of operators (hames and types)
e the equations

e the carrier is NOT to be specified here (it's abstract!)

66

Algebraic Theory of Monoid

e Operations:
o ¢:0
o m:?2
e Equations:
o {x}FHm(e,x)=x
o {x}FHmx,e)=x
o {x,y,2} F m(x,m(y,z)) = m@m(x,y),z)

67

Algebraic Theory & Models

e A model of the theory:
e a definition of the support and of the operations that satisfies the
equations.

e Alternatively, is an interpretation of the signature 2which validates all
the equations under some carrier
e We referto a model of theory T as a T-model or a T-algebra.

e Example models for theory of monoids:
o (N,0,4)
° (R,I,X),
o (I'>T,id, o)

68

Free Monoid

e Given a set (an "alphabet”) A,
the free monoid over Aiis (A*, €, -), where
e support: A* the set of finite lists of A (“words over A" like a,a,++-a,
e identity element €: the empty list;
e composition - : list concatenation.

e Example:takingA = {1,...,9},
1-(23-456) = (1-23)-456 = 123456

69

Free Monoid

e Given a set (an "alphabet”) A,
the free monoid over Aiis (A*, €, -), where
e support: A* the set of finite lists of A (“words over A" like a,a,++-a,
e identity element €: the empty list;
e composition - : list concatenation.

e Example:takingA = {1,...,9},
1-(23-456) = (1-23)-456 = 123456

70

Free Modele

e Let T be an algebraic theory and X a set.
e Afree T-model generated by X is a T-model M and a function
f: X — support(M) such that:

e Forevery other T-model M’ and function ' : X — supp(M’), there exists a

unigue morphism ® : M — M’ such that the following diagram

commutes: f
X ——=supp(M)

N

supp(M’)

71

Free Models of a. Theory will Determine a Monad

éawvere [heoriec

e Lawvere's idea: no matter how you present the theory, the same
operations should be derivable and satisfy the same equations

e A Lawvere theory bundles derivable operations and their equations into a
category.

73

Monad-Theory Correspondence and How chould we work more

e A monadis;

. T
e A ‘computational effect” Set — Set

e Sothat T-programs A L T(B) define the (squiggly) arrows in the category Kl

e The opposite of the category of T-programs between finite sets defines a Lawvere
theory L¥. Conversely, any Lawvere theory L defines a monad 7}, on category of set.

e Theorem: The category of Lawvere theories is equivalent to the category of finitary
monads on Set.
e Finitary monads and (Lawvere theories describe equivalent categorical encodings of

universal algebra.
74

Moreover if you are interected

75

Some Readings
Category Theory for Programmers
Sam Lindley's Effect Handler Oriented Programming slides

More to be updated at https./github.com/YunkaiZhang233/effect-reading/
blob/main/README.md

76

Thoank You!

