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What the heck is this?



We want to interact with the world 
…in a functional taste!
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Why do people ♥ functional programming?

● We compose our programs out of: 

All the way – from the tiniest bits to the big components.
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Program
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Input(s) result

We love modularity!



Why do people ♥ functional programming?

● We compose our programs out of: 

All the way – from the tiniest bits to the big components.
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Our Lovely 
Program

Input(s) result

Well... Yes... But…



Consider an annoying example…
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def f(x): 

    y = int(input("input:")) 

    print(y) 

    return x 

def f(x): 

    return x

They return the same thing, 
Shouldn't they be the same 
function?



Why do people ♥ functional programming?

● We compose our programs out of:
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Our Lovely 
Program

Input(s) result

Effects Happening



Some Common Computational Effects

● Input / Output 

● Error Handling and Exceptions 

● Mutable State 

● Logging 

● Concurrency 

● Generating Random Values 

……
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We want to interact with the world 
…in a functional taste!
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What is an effect?
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What is an Effect? 

Categories 101
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What is an Effect? 

Categories 101 

Monads 
(Categories for Computational Effects) 

Lawvere Theories 
(Categories of Operations and Equations 

A Comparison 
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Categories 101
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Functions

A function, e.g.  

comes with specified sets of “possible input values” and “potential output 
values.”  

We write 

 

to indicate f has source I and target O.

𝑓(𝑥) = 𝑥3  − 9𝑥 + 7

f : I → R

I f O
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Functions Compose!

● So why bother with source and targets? 
● They indicate when are two functions composable: 

● Are composable: 
● just when the target of f equals the source of g. 
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What is a category?

● A category is a two-sorted structure encoding the algebra of composition.  
● It has: 

○ Objects: A, B, C, …and 

○ Morphisms:   ,   , each specified with source and target 

● So that,  
○ each pair of composable arrows f and g 

 will have a composite arrow  

○ Each object has an identity arrow  
  
● for which the composition operation is associative and unital.

A f B B g C

f ∘ g
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Isomorphisms

● An isomorphism consists of:  

● So that: 

●  and   

● If A and B are isomorphic  
● then every category theoretic property of A is also true of B. 

𝑔  ∘ 𝑓 = id𝐴 𝑓  ∘ 𝑔 = id𝐵

26



Functors

● Given categories C and D, a functor  is specified by: 
● A mapping  whose value at  is written  

● For all , a function  whose 
value at   is written  

● …which is required to preserve composition and identity morphisms: 
●  
●

F : C → D
obj C → obj D X FX

X, Y ∈ C HomC(X, Y ) → HomD(FX, FY )
f : X → Y Ff : FX → FY

F(g ∘ f ) = F(g) ∘ F( f )
F(idX) = idF(X)
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Exemplar Categories

● In the category Set, the 
● Objects are (finite) sets X, Y, … 

● Arrows are functions … 

● In the syntactic category for some programming language, the 
● Objects are types X, Y, … 

● Arrows are programs  

● The precise ontology of the objects and arrows won’t matter much.

X f Y

X f Y
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Categories for Computational Effects 
(Monads!)
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Programs should form a category 

And an effect defines a monad 

Eugenio Moggi



Monads, Categorically

● A monad over a category C is a triple , where  
●  is a functor,  
● Morphisms  and  for every object  
● (For those of you who know: actually natural transformations) 
● Make the following diagrams commute:

(T, η, μ)
T : C → C

ηA : A → TA μA : T2(A) → T(A) A ∈ C
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Monads are Burritos

Assume  is a category of foods. 
●  is a functor, like burritos  

●  takes a regular value and turns it into a burrito 

●   takes a ridiculous burrito of burritos and turns them 
into a regular burrito.

C
T : C → C

ηA : A → TA

μA : T2(A) → T(A)
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Monads are Monoids
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A monad is a monoid in the category of endofunctors



T-Programs

Let T be a notion of computation (encoding an effect) 

A T-program from A to B is a function ,  
from the set of values of type A to the set of T-computations of type B. 

We also write  to denote  

A f T(B)

A f T(B)
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T-Programs

def greaterThanM (m : ℕ) (n : ℕ)  : Prop 
  ::= n > m 

--- setOf (p : α → Prop) : Set α 

def TNat (m : ℕ) : Set ℕ ::=  
setOf (greaterThanM m) 

35

ℕ → LeanSet ℕ
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Sample “Notions of Computation”  / T-Programs in the Category of Sets

● Exceptions:     where  is the set of exceptions 

● Partiality:  (i.e. Option A in Lean 4) 
● Side-Effect:   or        for fixed set 𝑆 

modelling the effect of a single mutable state storing a value of 𝑆. 

● Continuation: , or   for a fixed set 𝑅 

models the effect of call with current continuation (call/cc).  

● Interactive Input:    , where  is the set of characters 
● i.e set of U-branching trees (with finite branches) and A-labelled 

leaves, where  is the least solution to domain equation 

TA = A + E E
TA = A + { ⊥ }

TA = (S × A)S TA = {S → S × A}

TA = R(RA) TA = (A → R) → R

TA = μX . A + XU U

μX . τ X = τ
37
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Slogan
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A computational effect T defines a monad  

just when the T-programs   

defines the arrows in a category of T-programs KlT



Slogan
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A computational effect T defines a monad  

just when the T-programs   

defines the arrows in a category of T-programs KlT



The Category of T-Programs

● To define the category of T-programs we need: 

● Identity Arrows:   
● We can use  in monads!  (Reminder: ) so  

● We need to define composition making this diagram commute:

η η : IdC → T A ηA T(A)

41

Problem: 
  and  are not composable!A f T(B) B g T(C)



Kleisli Triple

● A Kleisli Triple over a category C is a triple , where  
●  is a functor,  
●  for every object  
●  for every object  and   

● Then we can have the Kleisli Composite of  and 

(T, η, μ)
T : C → C
ηA : A → TA A ∈ C
f* : TA → TB A, B ∈ C f : A → TB
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Kleisli Category over T: KlT

● Given an endofunctor T on category , the Kleisli Category  is defined as: 
●  

●  (i.e.  ) 

●  

● , given   and 

𝒞 KlT
Obj (KlT) = Obj(𝒞)
idA = ηA : A → T(A)
HomKlT(A, B) = Hom𝒞(A, TB)
g ∘Kl f = g* ∘ f : A → TC f : A → T(B) g : B → T(C)
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There is a one-to-one correspondence between 
Kleisli Triples and Monads
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  for list-computationsKllist

● A list-program  is a function from A to lists in B 

● The identity A  list(A) is the function    

● Any function  extends to a function   
● by applying g to each term in a list of elements of B  
● and concatenating the result.

A
singleton

list(A)
B g*

list(C) list(B) → list(C)
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Monads in Programming

class Monad m where 
    (>>>=)  ::: m a ->- (a ->- m b) ->- m b 
    return ::: a ->- m a
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Monads in Programming

class Monad m where 
    (>>>=)  ::: m a ->- (a ->- m b) ->- m b 
    return ::: a ->- m a
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  is a natural transformation 
So  is a morphism

η : IdC → T
ηA : A → TA



Monads in Programming

class Monad m where 
    (>>>=)  ::: m a ->- (a ->- m b) ->- m b 
    return ::: a ->- m a
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 for every object  and   f* : TA → TB A, B ∈ C f : A → TB



Monads in Programming

class Monad m where 
    join   ::: m (m a) ->- m a 
    return ::: a ->- m a

50

  is a natural transformation 
So  is a morphism

μ : T2 → T
μA : T2A → TA



Monads in Programming

class Monad m where 
    (>>>=)  ::: m a ->- (a ->- m b) ->- m b 
    return ::: a ->- m a
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 for every object  and   f* : TA → TB A, B ∈ C f : A → TB



Exceptions as a Monad

•  

•                  (in Haskell Monad, return v) 

• Given : 

•  

•  
• Operations Specific to Exceptions: 

•  
•

TA = val A |Exn E ( ≈ A + E)

ηv = val V

f : A → TB
(val V ) >>>= f = f v

(Exn E ) >>>= f = Exn E

raise e = Exn e
try a with x → b = match a with (val v → v |Exn x → b)
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Mutable States as a Monad

•       (S is the types of states) 

•                  (in Haskell Monad, return v) 

• Given : 

•  where     (threading the state) 

• Operations Specific to Mutable States: 
•  
•

TA = S → A × S

ηv = ∀s . (v, s)

f : A → TB
a >>>= f = ∀s1 . f x s2 (x, s2) = as1

get loc = ∀s . (s(loc), s)
set loc v = ∀s . ((), s{l ← v})

53



Monads are used as ‘backbones’ for interpreting effects
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Monads are used as ‘backbones’ for interpreting 
Some effects
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Monads are used as ‘backbones’ for interpreting  
Some effects
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Monoids in Monoidal Categories 



But where do these monads come from?
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Algebraic Theories for Algebraic Effects 
(Lawvere Theories!)
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Algebraic Theories
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Algebraic Structures

● An algebraic structure comprises of: 

● a set (or a type), called the carrier of the structure; 

● operations over this set (with name and arity) 

● equations (laws) that these operations satisfy.
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Algebraic Structure of  Monoids

● A monoid    can be viewed as an algebraic structure, where 
● Carrier:  
● Operations: 

●  
●  

● Equations: 
●  
●  
●

(T, ϵ, ∘ )
T

ϵ : 0
∘ : 2

ϵ ∘ x = x
x ∘ ϵ = x
x ∘ (y ∘ z) = (x ∘ y) ∘ z
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Algebraic Structure of  Monoids

● A monoid    can be viewed as an algebraic Structure, where 
● Carrier:  
● Operations: 

●  
●  

● Equations: 
●  
●  
●

(T, ϵ, ∘ )
T

ϵ : 0
m : 2

m(ϵ, x) = x
m(x, ϵ) = x
m(x, m(y, z)) = m(m(x, y), z)
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Algebraic Structure of  Monoids

● A monoid    can be viewed as an algebraic structure, where 
● Carrier:  
● Operations: 

●  
●  

● Equations: 
●  
●  
●

(T, ϵ, ∘ )
T

ϵ : 0
m : 2

{x} ⊢ m(ϵ, x) = x
{x} ⊢ m(x, ϵ) = x
{x, y, z} ⊢ m(x, m(y, z)) = m(m(x, y), z)
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Algebraic Theory

● A theory contains 

● the signature of operators (names and types)  

● the equations 

● the carrier is NOT to be specified here (it’s abstract!)
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Algebraic Theory (first-order finitary)

● A theory contains 

● the signature of operators (names and types)  

● the equations 

● the carrier is NOT to be specified here (it’s abstract!)
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Algebraic Theory of Monoid

● Operations: 
●  
●  

● Equations: 
●  
●  
●

ϵ : 0
m : 2

{x} ⊢ m(ϵ, x) = x
{x} ⊢ m(x, ϵ) = x
{x, y, z} ⊢ m(x, m(y, z)) = m(m(x, y), z)
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Algebraic Theory & Models

● A model of the theory:  
● a definition of the support and of the operations that satisfies the 

equations. 
● Alternatively, is an interpretation of the signature  which validates all 

the equations under some carrier 
● We refer to a model of  theory T as a T-model or a T-algebra. 

● Example models for theory of monoids: 
● ,  
● ,  
●

ΣT

(ℕ,0,+)
(ℝ,1,×)
(T → T, id, ∘ )
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Free Monoid

● Given a set (an “alphabet”) A, 
the free monoid over A is , where 
● support: , the set of finite lists of A (“words over A”) like  
● identity element : the empty list;  
● composition  : list concatenation. 

● Example: taking , 

(A*, ϵ, ⋅ )
A* a1a2⋯an

ϵ
⋅

A = {1,...,9}
1 ⋅ (23 ⋅ 456) = (1 ⋅ 23) ⋅ 456 = 123456
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Free Models

● Let T be an algebraic theory and X a set. 
● A free T-model generated by X is a T-model   and a function 

 such that: 

● For every other T-model  and function , there exists a 
unique morphism  such that the following diagram 
commutes:

M
f : X → support(M )

M′ f′ : X → supp(M′ )
Φ : M → M′ 
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Free Models of a Theory will Determine a Monad
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Lawvere Theories

● Lawvere’s idea: no matter how you present the theory, the same 
operations should be derivable and satisfy the same equations 

● A Lawvere theory bundles derivable operations and their equations into a 
category.
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Monad-Theory Correspondence and How should we work more

● A monad is: 
● A “computational effect”  

● So that T-programs  define the (squiggly) arrows in the category  

● The opposite of the category of T-programs between finite sets defines a Lawvere 
theory . Conversely, any Lawvere theory  defines a monad  on category of set. 

● Theorem: The category of Lawvere theories is equivalent to the category of finitary 
monads on Set. 

● Finitary monads and (Lawvere theories describe equivalent categorical encodings of 
universal algebra. 

●

Set T Set

A f T(B) KlT

Lop
T L TL
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Moreover if you are interested
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Some Readings

Category Theory for Programmers 

Sam Lindley’s Effect Handler Oriented Programming slides 

More to be updated at https://github.com/YunkaiZhang233/effect-reading/
blob/main/README.md 
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Thank You!
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