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Computational Effects:

ory of Categories and Algebras

UWhat the heck is 7%1'{'.7




Ue want to intferact with the world

..in a fonctional tacte!



Ue want to intferact with the world



Why do people v ﬁmctiona/,braym.mming?

e e compose our programs out of:

Input(s)

o result
Program

All the way - from the tiniest bits to the big components.
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Why do people v Functional programming?

e e compose our programs out of:

result
»IIIIIIIIII-—-—-—-—-»

All the way - from the tiniest bits to the big components.

We love modularity!

Input(s)




Why do people v fanction&t/,braym.mming?

e e compose our programs out of:

o result >
Program

All the way - from the tiniest bits to the big components.

Well... Yes... But...

Input(s)




Consider an annoying example...

y = int(input("input:"))

print(y)

They return the same thing,
Shouldn't they be the same
function?



Why do people v Functional programming?

e e compose our programs out of:

N N result >
Program

Input(s)
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Some Common Computational Effects

Input / Output

Error Handling and Exceptions
Mutable State

Logging

Concurrency

Generating Random Values




Ue want to intferact with the world

..in a fonctional tacte!
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...in a fonctional tacte!



What is an effect?
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What is an Effect?

Categories 101
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What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)
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What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

Lawvere Theories
(Categories of Operations and Equations
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Categoriec 107




Functions
A function, e.g. f(x) =x> —9x +7

comes with specified sets of “possible input values” and “potential output
values'f: I — R

We write

140

to indicate f has source | and target O.
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Functions Compose!

e So why bother with source and targets?
e They indicate when are two functions composable:

A#B and B ——

e Are composable:
e just when the target of f equals the source of g.
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What is a category?

e A categoryis atwo-sorted structure encoding the algebra of composition.
It has:
o Objects: A B, C, ..and

o Morphisms: A L B. B C . each specified with source and taraet

e So that, B
o each pair of composable arrows fand g . g
will have a composite arrow f o g / \
ida N
o Each object has an identity arrow A—A A gof > C

e for which the composition operation is associative and unital.
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Icomorphicms

e Anisomorphism consists of:

f‘
A
g

So that;
gof=idgand f o g = idp

If A and B are isomorphic
then every category theoretic property of A is also true of B.
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Functors

e Given categories C and D, a functor F' : C — D is specified by:
e A mapping obj C' — obj D whose value at X is written F X

o ForallX,Y € C afunction Hom (X, Y) - Hompy(FX, FY) whose
value at f: X — Yiswritten Ff : FX — FY

e .which is required to preserve composition and identity morphisms:
o F(gef)=F(g)eF(f) “
o F(Idx) — |dF(X)

27



Exemplar Cateqories

e Inthe category Set, the
e Objects are (finite) sets X, Y, ..

e Arrows are functions X 1> Y.

e In the syntactic category for some programming language, the
e Objectsaretypes XY, .

e Arrows are programs X L Y

e The precise ontology of the objects and arrows won't matter much.
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Categories for Computational Effects
(Monade!)




1\
UK N
& pis? e
0ac s
g tes
VAL o
10847 o land s 4o
0! 0y
he JOBLS wo
o T ode‘:ha‘ tm ot a
e bl eno! equi¥

1
uage
ing Langu
ramming La
' Progra
iew of P
16W
stract \
])-‘Jtld
An A

Eugenio Mo

Sci.
‘omp.

for Found. of Co
Lab. fo

ory
a Categ
should form

ms

Progra

d
mona
ffect defines a
he

And a

My as f
ersity ’
Mit
™ p John )
at S thank to he
ced at han! od th
ere produce :\.ho attended
T Wi . ents
'These No}ea. Term 1gxgall students
i SI’"“g. >, and to
ht in sible,
taug] rd poss
Stanfo
to N
feedback.

[

Eugenio Moggi

Otiong co, putation Mopgg,
Ugenj, M,
Abstracl
The A-caj uly, Sideray Usefyy) m, t)mma:ical too] , e Stud)y, f p Wing
Iauguagm, ice Prog, be nientxﬁ&i With «Henus. Howavar, i ong °S furgp, T ang
Uses ﬂ?fconversion £ proy, Walep, of p, 1S, e 2 grogg Plificagje,, i i T0duceq
(programs e identiﬁed 'th to, [!Luctions fr Valyeq to va/ues), at ‘may Jeop, se the
applicability of thsore:i Tesujgg In this T W intl'oduce Caleyj; bage, 1 4 g, ©Boricy)
Mg "Utaty o, s thay Provige Correcy ), IS for by i Uivalen, of amg,
for ide of cornputah}m.

zztroduction

T, is aboy, Iogxcs Onjp,, t p, gralns, Pay Ulay Proy, eqi euce op
DPro, Fol]owin & usolzdat d try, tion in tbeoretic ter Sci, we xdeutzfy Pr Bramg
With the Oseq A-ter, 3 PoSsiby Conty, a Cons,, ts, ¢ D ding Some g, tureg of
€ pr, gr; Uage Unde, considera 27 €re gy, 1C-byg, d app,
prowug equivaleuce of Brams.

The o Crat;, na| Prog, arts g, an erat:on cs, €g. 5 Parjy) tion
mappmg ever, program (i. Closeq term) to jgg rebh]tlllg Valye (if any) induc‘es a
Congpy, lce relat'on 1 opy, terpg Calleq operational ©QUivy, Nce (see eg. [Plo75]).
the DProp), 0 pro, © that two ter; are operationally equj, Jeng,

e denotat'onal a,ppmach ives an interpretatiau Of the (progmmmmg) 1

matbematical structure, the intended Moge, Tha.. the Prop, to
denote the Same object in the iatended o

“he logica; PProge, .

lien the ...

30



Monads, Categorically

e A monad over a category Cis a triple (T, n, i), where

T : C — Cisafunctor,
Morphisms 7, : A = TA and py : T?*(A) — T(A) for every object A € C
(For those of you who know: actually natural transformations)

o
e Make the following diagrams commute:
TA Tna

734 AL 12y 7A A LT 7y

T/_LA UA ldTA A .
A idT 4
2 V
T°A—>TA T A .

HA



Monads are Burritos

Assume C'is a category of foods. =&y

o 1 :(C — (Cisafunctor like burritos /i

e 1, :A — TA takes aregular value and turns it into a burrito

o Uy T?(A) — T(A) takes a ridiculous burrito of burritos and turns them
into a regular burrito.

1
e
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Monaods are Meonoide

TA
T34 LT 724 Ta AL rag LA g
T id7 4
ldTA
v \Z v
T?A >TA T A
HA

A monad ie a monoid in the category of endofunctors
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[-Programs

Let T be a notion of computation (encoding an effect)

A T-program from A to B is a function A L T(B),
from the set of values of type A to the set of T-computations of type B.

,
We also write # 7 B to denote A L T(B)
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[-Programs

def greaterThanM (m : N) (n : N)
= n >m

—- setOf (p : a » Prop) : Set «a

def TNat (m : N) : Set N :=
setOf (greaterThanM m)

: Prop

N — LeanSet N
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[-Programs

def greaterThanM (m : N) (n : N)
= n >m

—- setOf (p : a » Prop) : Set «a

def TNat (m : N) : Set N :=
setOf (greaterThanM m)

: Prop

N — T(N)
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Sample ‘Notions of Computation” [/ T-Programs in the Cotegory of Sete

e Exceptions: TA = A + E where E is the set of exceptions

e Partiality: TA=A+ { L } (ie.Option AinLean 4)

o Side-Effect: TA = (S X A)® or TA={S - SX A} forfixed set S
modelling the effect of a single mutable state storing a value of S.

e Continuation: TA = R®Y or TA = (A—->R)—>R for a fixed set R

models the effect of call with current continuation (call/cc).

e Interactive Input: TA = uX.A + XV , where U is the set of characters
e e set of U-branching trees (with finite branches) and A-labelled

leaves, where uX . 7 is the least solution to domain equation X = 7
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modelling the effect of a single mutable state storing a value of S.
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models the effect of call with current continuation (call/cc).
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leaves, where uX . 7 is the least solution to domain equation X = 7
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Clogan

A computational effect T defines a monad

f
just when the T-programs A =7 B

defines the arrows in a category of T-programs Kl

T

39



Clogan

A computational effect T defines a monad

f
just when the T-programs A =7 B

defines the arrows in a category of T-programs Kl

T
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The Category of T-Programs

e TJo define the category of T-programs we need:
id
e |dentity Arrows: A ~> A

e \Xe can use 7 in monads! (Reminder:n : Idc — 1) so A o T(A)

e \We need to define composition making this diagram commute:

/f/_,Jf' \‘*\—\,\i Problem:

A oS C A 1> T(B)and B LN T(C) are not composable!
gof
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Kleisli Triple

o AKleisli Triple over a category Cis a triple (7, n, u), where
e T :C — Cisafunctor
o 714:A — TAforeveryobjectA € C
o f*:TA — TBforeveryobjectA,Be Cand f:A — TB

f g
e Then we can have the Kleisli Composite of A~*Band B ™~ C
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Kleisti Category over T: Kl

e Given an endofunctor T on category €, the Kleisli Category Kl is defined as:
e Obj(Kl;) = Obj(¥)
o idAznA:AaT(A)(i.e.Aié@A)
o HomKlT(A, B) = Homg(A, TB)
o gop f=g%cf:A—=TC gvenf:A—>T(B)andg:B - T(C)
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There ic a one-to-one correspondence befween

Kleisli Triplee and Monads
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Kl fiot for lict-computations

f
A list-program A =7 Bis a function from A to lists in B

i singleton
The identityAiﬂ@ list(A) is the function A 0 > list(A)

*
Any function B N list(C) extends to a function list(B) — list(C)
e Dby applying g to each term in a list of elements of B
e and concatenating the result.

The Kleisli composite

fr’;ﬁ)' B . 1ist(B) o
f \
A w C A — o » 1ist(C)

is defined by application of f and g followed by concatenation.
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Monads in Progmmm‘ng

class Monad m where
(>=) @ ma—> (a >mb) > mb
return :: a — m a

46



Monads in Progmmm‘ng

class Monad

(>>=)

return

where
a > (a =
a — a

b) —
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Monads in Progmmming

class Monad m where
(>=) @ ma—> (a >mb) > mb
return :: a — m a

n . lde = 1 is a natural transformation
Son, : A — TA is a morphism
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Monads in Progmmming

class Monad m where
(>=) @2 ma—> (a >mb) > mb
return :: a — m a

f* . TA — TB foreveryobject A, B € Cand f: A - TB
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Monads in Progmmming

class Monad m where
join c:m(ma) > ma
return :: a — m a

i T?> = T is a natural transformation
Sop, : T°A — TA is a morphism
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Monads in Progmmming

class Monad m where
(>=) @2 ma—> (a >mb) > mb
return :: a — m a

f* . TA — TB foreveryobject A, B € Cand f: A - TB

A1



Exceptions ag a Monad
- TA =valA|ExnE (~A+E)
-1, =valV (in Haskell Monad, return v)

- Givenf: A - TB:
e(val V)>»>=f=fv
« (Exn E)>>=f=EXxn E
+ Operations Specific to Exceptions:
- raisee = Exne
- try a withx = b = match a with (valv - v|Exnx — b)
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Mutable States ae a Monad

- TA=§5 > AXS (Sisthetypes of states)

-1, =Vs.(v,s) (in Haskell Monad, return v)

- Givenf: A - TB:

ca>>=f=Vs .fxs, where (x,s,) =as,

- Operations Specific to Mutable States:
- get loc =Vs.(s(loc), s)
- setloc v =Vs.((),s{l < v})

(threading the state)
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Monades are used a¢

for interpreting effects
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Mon
ads are used a
¢
Co
me effects

I[’ .
or interpreting
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Aonsds are used ac Lockbones for interpreting
T Come effects

Monoids in Monoidal Categories
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But
where d
o these monad
¢ come fi
rom?
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Algebraic Theories for Algebraic Effects
(L awvere Theoriec!)
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Algebraic Theories

Algebraic Theory

A signature ¥ = (X, ar) consists of

M aset X of o bols and

M a function ar: ¥ — N, which assigns the arity ar(op) for
each op € 2.
For a signature X and a set X, the set of Terms(X)

generated by X is defined as the smallest set such that
B X C Termy(X) and
M foranyop € X and ti, ..., ty(op) € Terms(X),
op(ti, . - -, tar(op)) € Termg(X).

An equation is a pair (¢,r) of X-terms £,r € Termg(V).
We sometime write an equation (¢,r) as V£ =r.

An ic theory T is a pair (X, ) of a signature ¥ and
a set of equations £ = {V; F ¢; = r;}ies.
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Alaebraic Structures

e An algebraic structure comprises of:
e aset(oratype) called the carrier of the structure;
e operations over this set (with name and arity)

e equations (laws) that these operations satisfy.
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Algebraic Structure of Monoids

e Amonoid (7, €, o) can be viewed as an algebraic structure, where

e Carrier: T
e Operations:

o ¢:0
o o:2

e Equations:
@ €oX =X
® Xo€ =X

e xo(yez)=(xoy)oz
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Algebraic Structure of Monoids

e Amonoid (7, €, o) can be viewed as an algebraic Structure, where

e Carrier: T
e Operations:

o ¢:0
o m:?2
e Equations:
o m(e,x)=x
o m(x,e)=x
o m(x,m(y,z)) = m(m(x,y),z)
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Algebraic Structure of Monoids

e Amonoid (7, €, o) can be viewed as an algebraic structure, where

e Carrier: T
e Operations:

o ¢:0
o m:?2
e Equations:
o {x}FHm(e,x)=x
o {x}FHmx,e)=x
o {x,y,2} Fmlx,m(y,z)) = m(m(x,y),z)
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Algebraic Theory

e Atheory contains
e the signature of operators (hames and types)
e the equations

e the carrier is NOT to be specified here (it's abstract!)
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/’/geér aic Theary [ﬂ'rct—ordek f/‘m'z‘akg}

e Atheory contains
e the signature of operators (hames and types)
e the equations

e the carrier is NOT to be specified here (it's abstract!)
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Algebraic Theory of Monoid

e Operations:
o ¢:0
o m:?2
e Equations:
o {x}FHm(e,x)=x
o {x}FHmx,e)=x
o {x,y,2} F m(x,m(y,z)) = m@m(x,y),z)
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Algebraic Theory & Models

e A model of the theory:
e a definition of the support and of the operations that satisfies the
equations.

e Alternatively, is an interpretation of the signature 2which validates all
the equations under some carrier
e We referto a model of theory T as a T-model or a T-algebra.

e Example models for theory of monoids:
o (N,0,4)
° (R,I,X),
o (I'>T,id, o)
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Free Monoid

e Given a set (an "alphabet”) A,
the free monoid over Aiis (A*, €, - ), where
e support: A* the set of finite lists of A (“words over A" like a,a,++-a,
e identity element €: the empty list;
e composition - : list concatenation.

e Example:takingA = {1,...,9},
1-(23-456) = (1-23)-456 = 123456
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Free Modele

e Let T be an algebraic theory and X a set.
e Afree T-model generated by X is a T-model M and a function
f: X — support(M) such that:

e Forevery other T-model M’ and function ' : X — supp(M’), there exists a

unigue morphism ® : M — M’ such that the following diagram

commutes: f
X ——=supp(M)

N

supp(M’)
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Free Models of a. Theory will Determine a Monad



éawvere [heoriec

e Lawvere's idea: no matter how you present the theory, the same
operations should be derivable and satisfy the same equations

e A Lawvere theory bundles derivable operations and their equations into a
category.
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Monad-Theory Correspondence and How chould we work more

e A monadis;

. T
e A ‘computational effect” Set — Set

e Sothat T-programs A L T(B) define the (squiggly) arrows in the category Kl

e The opposite of the category of T-programs between finite sets defines a Lawvere
theory L¥. Conversely, any Lawvere theory L defines a monad 7}, on category of set.

e Theorem: The category of Lawvere theories is equivalent to the category of finitary
monads on Set.
e Finitary monads and (Lawvere theories describe equivalent categorical encodings of

universal algebra.
74



Moreover if you are interected
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Some Readings
Category Theory for Programmers
Sam Lindley's Effect Handler Oriented Programming slides

More to be updated at https./github.com/YunkaiZhang233/effect-reading/
blob/main/README.md
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Thoank You!



