
Computational Effects:

yz9522@ic.ac.uk

Yunkai Zhang

A Story of Categories and Algebras

Computational Effects:

yz9522@ic.ac.uk

Yunkai Zhang

A Story of Categories and Algebras

What the heck is this?

We want to interact with the world
…in a functional taste!

3

We want to interact with the world
…in a functional taste!

4

Why do people ♥ functional programming?

● We compose our programs out of:

All the way – from the tiniest bits to the big components.

5

Our Lovely
Program

Input(s) result

Why do people ♥ functional programming?

● We compose our programs out of:

All the way – from the tiniest bits to the big components.

6

Input(s) result

Why do people ♥ functional programming?

● We compose our programs out of:

All the way – from the tiniest bits to the big components.

7

Input(s) result

We love modularity!

Why do people ♥ functional programming?

● We compose our programs out of:

All the way – from the tiniest bits to the big components.

8

Our Lovely
Program

Input(s) result

Well... Yes... But…

Consider an annoying example…

9

def f(x):

 y = int(input("input:"))

 print(y)

 return x

def f(x):

 return x

They return the same thing,
Shouldn't they be the same
function?

Why do people ♥ functional programming?

● We compose our programs out of:

10

Our Lovely
Program

Input(s) result

Effects Happening

Some Common Computational Effects

● Input / Output

● Error Handling and Exceptions

● Mutable State

● Logging

● Concurrency

● Generating Random Values

……

11

We want to interact with the world
…in a functional taste!

12

We want to interact with the world
…in a functional taste!

13

What is an effect?

14

What is an Effect?

Categories 101

15

What is an Effect?

Categories 101

Monads

16

What is an Effect?

Categories 101

Monads

17

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

18

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

Lawvere Theories

19

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

Lawvere Theories
(Categories of Operations and Equations)

20

What is an Effect?

Categories 101

Monads
(Categories for Computational Effects)

Lawvere Theories
(Categories of Operations and Equations

A Comparison

21

Categories 101

22

Functions

A function, e.g.

comes with specified sets of “possible input values” and “potential output
values.”

We write

to indicate f has source I and target O.

𝑓(𝑥) = 𝑥3 − 9𝑥 + 7

f : I → R

I f O

23

Functions Compose!

● So why bother with source and targets?
● They indicate when are two functions composable:

● Are composable:
● just when the target of f equals the source of g.

24

What is a category?

● A category is a two-sorted structure encoding the algebra of composition.
● It has:

○ Objects: A, B, C, …and

○ Morphisms: , , each specified with source and target

● So that,
○ each pair of composable arrows f and g

 will have a composite arrow

○ Each object has an identity arrow

● for which the composition operation is associative and unital.

A f B B g C

f ∘ g

25

Isomorphisms

● An isomorphism consists of:

● So that:

● and

● If A and B are isomorphic
● then every category theoretic property of A is also true of B.

𝑔 ∘ 𝑓 = id𝐴 𝑓 ∘ 𝑔 = id𝐵

26

Functors

● Given categories C and D, a functor is specified by:
● A mapping whose value at is written

● For all , a function whose
value at is written

● …which is required to preserve composition and identity morphisms:
●
●

F : C → D
obj C → obj D X FX

X, Y ∈ C HomC(X, Y) → HomD(FX, FY)
f : X → Y Ff : FX → FY

F(g ∘ f) = F(g) ∘ F(f)
F(idX) = idF(X)

27

Exemplar Categories

● In the category Set, the
● Objects are (finite) sets X, Y, …

● Arrows are functions …

● In the syntactic category for some programming language, the
● Objects are types X, Y, …

● Arrows are programs

● The precise ontology of the objects and arrows won’t matter much.

X f Y

X f Y

28

Categories for Computational Effects
(Monads!)

29

30

Programs should form a category

And an effect defines a monad

Eugenio Moggi

Monads, Categorically

● A monad over a category C is a triple , where
● is a functor,
● Morphisms and for every object
● (For those of you who know: actually natural transformations)
● Make the following diagrams commute:

(T, η, μ)
T : C → C

ηA : A → TA μA : T2(A) → T(A) A ∈ C

31

Monads are Burritos

Assume is a category of foods.
● is a functor, like burritos

● takes a regular value and turns it into a burrito

● takes a ridiculous burrito of burritos and turns them
into a regular burrito.

C
T : C → C

ηA : A → TA

μA : T2(A) → T(A)

32

Monads are Monoids

33

A monad is a monoid in the category of endofunctors

T-Programs

Let T be a notion of computation (encoding an effect)

A T-program from A to B is a function ,
from the set of values of type A to the set of T-computations of type B.

We also write to denote

A f T(B)

A f T(B)

34

T-Programs

def greaterThanM (m : ℕ) (n : ℕ) : Prop
 ::= n > m

--- setOf (p : α → Prop) : Set α

def TNat (m : ℕ) : Set ℕ ::=
setOf (greaterThanM m)

35

ℕ → LeanSet ℕ

T-Programs

def greaterThanM (m : ℕ) (n : ℕ) : Prop
 ::= n > m

--- setOf (p : α → Prop) : Set α

def TNat (m : ℕ) : Set ℕ ::=
setOf (greaterThanM m)

36

ℕ → T(ℕ)

Sample “Notions of Computation” / T-Programs in the Category of Sets

● Exceptions: where is the set of exceptions

● Partiality: (i.e. Option A in Lean 4)
● Side-Effect: or for fixed set 𝑆

modelling the effect of a single mutable state storing a value of 𝑆.

● Continuation: , or for a fixed set 𝑅

models the effect of call with current continuation (call/cc).

● Interactive Input: , where is the set of characters
● i.e set of U-branching trees (with finite branches) and A-labelled

leaves, where is the least solution to domain equation

TA = A + E E
TA = A + { ⊥ }

TA = (S × A)S TA = {S → S × A}

TA = R(RA) TA = (A → R) → R

TA = μX . A + XU U

μX . τ X = τ
37

Sample “Notions of Computation” / T-Programs in the Category of Sets

● Exceptions: where is the set of exceptions

● Partiality: (i.e. Option A in Lean 4)
● Side-Effect: or for fixed set 𝑆

modelling the effect of a single mutable state storing a value of 𝑆.

● Continuation: , or for a fixed set 𝑅

models the effect of call with current continuation (call/cc).

● Interactive Input: , where is the set of characters
● i.e set of U-branching trees (with finite branches) and A-labelled

leaves, where is the least solution to domain equation

TA = A + E E
TA = A + { ⊥ }

TA = (S × A)S TA = {S → S × A}

TA = R(RA) TA = (A → R) → R

TA = μX . A + XU U

μX . τ X = τ
38

Slogan

39

A computational effect T defines a monad

just when the T-programs

defines the arrows in a category of T-programs KlT

Slogan

40

A computational effect T defines a monad

just when the T-programs

defines the arrows in a category of T-programs KlT

The Category of T-Programs

● To define the category of T-programs we need:

● Identity Arrows:
● We can use in monads! (Reminder:) so

● We need to define composition making this diagram commute:

η η : IdC → T A ηA T(A)

41

Problem:
 and are not composable!A f T(B) B g T(C)

Kleisli Triple

● A Kleisli Triple over a category C is a triple , where
● is a functor,
● for every object
● for every object and

● Then we can have the Kleisli Composite of and

(T, η, μ)
T : C → C
ηA : A → TA A ∈ C
f* : TA → TB A, B ∈ C f : A → TB

42

Kleisli Category over T: KlT

● Given an endofunctor T on category , the Kleisli Category is defined as:
●

● (i.e.)

●

● , given and

𝒞 KlT
Obj (KlT) = Obj(𝒞)
idA = ηA : A → T(A)
HomKlT(A, B) = Hom𝒞(A, TB)
g ∘Kl f = g* ∘ f : A → TC f : A → T(B) g : B → T(C)

43

There is a one-to-one correspondence between
Kleisli Triples and Monads

44

 for list-computationsKllist

● A list-program is a function from A to lists in B

● The identity A list(A) is the function

● Any function extends to a function
● by applying g to each term in a list of elements of B
● and concatenating the result.

A
singleton

list(A)
B g*

list(C) list(B) → list(C)

45

Monads in Programming

class Monad m where
 (>>>=) ::: m a ->- (a ->- m b) ->- m b
 return ::: a ->- m a

46

Monads in Programming

class Monad m where
 (>>>=) ::: m a ->- (a ->- m b) ->- m b
 return ::: a ->- m a

47

 is a functor T : C → C

Monads in Programming

class Monad m where
 (>>>=) ::: m a ->- (a ->- m b) ->- m b
 return ::: a ->- m a

48

 is a natural transformation
So is a morphism

η : IdC → T
ηA : A → TA

Monads in Programming

class Monad m where
 (>>>=) ::: m a ->- (a ->- m b) ->- m b
 return ::: a ->- m a

49

 for every object and f* : TA → TB A, B ∈ C f : A → TB

Monads in Programming

class Monad m where
 join ::: m (m a) ->- m a
 return ::: a ->- m a

50

 is a natural transformation
So is a morphism

μ : T2 → T
μA : T2A → TA

Monads in Programming

class Monad m where
 (>>>=) ::: m a ->- (a ->- m b) ->- m b
 return ::: a ->- m a

51

 for every object and f* : TA → TB A, B ∈ C f : A → TB

Exceptions as a Monad

•

• (in Haskell Monad, return v)

• Given :

•

•
• Operations Specific to Exceptions:

•
•

TA = val A |Exn E (≈ A + E)

ηv = val V

f : A → TB
(val V) >>>= f = f v

(Exn E) >>>= f = Exn E

raise e = Exn e
try a with x → b = match a with (val v → v |Exn x → b)

52

Mutable States as a Monad

• (S is the types of states)

• (in Haskell Monad, return v)

• Given :

• where (threading the state)

• Operations Specific to Mutable States:
•
•

TA = S → A × S

ηv = ∀s . (v, s)

f : A → TB
a >>>= f = ∀s1 . f x s2 (x, s2) = as1

get loc = ∀s . (s(loc), s)
set loc v = ∀s . ((), s{l ← v})

53

Monads are used as ‘backbones’ for interpreting effects

54

Monads are used as ‘backbones’ for interpreting effects

55

Monads are used as ‘backbones’ for interpreting
Some effects

56

Monads are used as ‘backbones’ for interpreting
Some effects

57

Monoids in Monoidal Categories

But where do these monads come from?

58

Algebraic Theories for Algebraic Effects
(Lawvere Theories!)

59

Algebraic Theories

60

Algebraic Structures

● An algebraic structure comprises of:

● a set (or a type), called the carrier of the structure;

● operations over this set (with name and arity)

● equations (laws) that these operations satisfy.

61

Algebraic Structure of Monoids

● A monoid can be viewed as an algebraic structure, where
● Carrier:
● Operations:

●
●

● Equations:
●
●
●

(T, ϵ, ∘)
T

ϵ : 0
∘ : 2

ϵ ∘ x = x
x ∘ ϵ = x
x ∘ (y ∘ z) = (x ∘ y) ∘ z

62

Algebraic Structure of Monoids

● A monoid can be viewed as an algebraic Structure, where
● Carrier:
● Operations:

●
●

● Equations:
●
●
●

(T, ϵ, ∘)
T

ϵ : 0
m : 2

m(ϵ, x) = x
m(x, ϵ) = x
m(x, m(y, z)) = m(m(x, y), z)

63

Algebraic Structure of Monoids

● A monoid can be viewed as an algebraic structure, where
● Carrier:
● Operations:

●
●

● Equations:
●
●
●

(T, ϵ, ∘)
T

ϵ : 0
m : 2

{x} ⊢ m(ϵ, x) = x
{x} ⊢ m(x, ϵ) = x
{x, y, z} ⊢ m(x, m(y, z)) = m(m(x, y), z)

64

Algebraic Theory

● A theory contains

● the signature of operators (names and types)

● the equations

● the carrier is NOT to be specified here (it’s abstract!)

65

Algebraic Theory (first-order finitary)

● A theory contains

● the signature of operators (names and types)

● the equations

● the carrier is NOT to be specified here (it’s abstract!)

66

Algebraic Theory of Monoid

● Operations:
●
●

● Equations:
●
●
●

ϵ : 0
m : 2

{x} ⊢ m(ϵ, x) = x
{x} ⊢ m(x, ϵ) = x
{x, y, z} ⊢ m(x, m(y, z)) = m(m(x, y), z)

67

Algebraic Theory & Models

● A model of the theory:
● a definition of the support and of the operations that satisfies the

equations.
● Alternatively, is an interpretation of the signature which validates all

the equations under some carrier
● We refer to a model of theory T as a T-model or a T-algebra.

● Example models for theory of monoids:
● ,
● ,
●

ΣT

(ℕ,0,+)
(ℝ,1,×)
(T → T, id, ∘)

68

Free Monoid

● Given a set (an “alphabet”) A,
the free monoid over A is , where
● support: , the set of finite lists of A (“words over A”) like
● identity element : the empty list;
● composition : list concatenation.

● Example: taking ,

(A*, ϵ, ⋅)
A* a1a2⋯an

ϵ
⋅

A = {1,...,9}
1 ⋅ (23 ⋅ 456) = (1 ⋅ 23) ⋅ 456 = 123456

69

Free Monoid

● Given a set (an “alphabet”) A,
the free monoid over A is , where
● support: , the set of finite lists of A (“words over A”) like
● identity element : the empty list;
● composition : list concatenation.

● Example: taking ,

(A*, ϵ, ⋅)
A* a1a2⋯an

ϵ
⋅

A = {1,...,9}
1 ⋅ (23 ⋅ 456) = (1 ⋅ 23) ⋅ 456 = 123456

70

Free Models

● Let T be an algebraic theory and X a set.
● A free T-model generated by X is a T-model and a function

 such that:

● For every other T-model and function , there exists a
unique morphism such that the following diagram
commutes:

M
f : X → support(M)

M′ f′ : X → supp(M′)
Φ : M → M′

71

Free Models of a Theory will Determine a Monad

72

Lawvere Theories

● Lawvere’s idea: no matter how you present the theory, the same
operations should be derivable and satisfy the same equations

● A Lawvere theory bundles derivable operations and their equations into a
category.

73

Monad-Theory Correspondence and How should we work more

● A monad is:
● A “computational effect”

● So that T-programs define the (squiggly) arrows in the category

● The opposite of the category of T-programs between finite sets defines a Lawvere
theory . Conversely, any Lawvere theory defines a monad on category of set.

● Theorem: The category of Lawvere theories is equivalent to the category of finitary
monads on Set.

● Finitary monads and (Lawvere theories describe equivalent categorical encodings of
universal algebra.

●

Set T Set

A f T(B) KlT

Lop
T L TL

74

Moreover if you are interested

75

Some Readings

Category Theory for Programmers

Sam Lindley’s Effect Handler Oriented Programming slides

More to be updated at https://github.com/YunkaiZhang233/effect-reading/
blob/main/README.md

76

Thank You!

77

